US009189355B1

a2 United States Patent

Moturu

US 9,189,355 B1
Nov. 17, 2015

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND SYSTEM FOR PROCESSING A
SERVICE REQUEST

(71)
(72)

Applicant: Tapasvi Moturu, Sunnyvale, CA (US)
Inventor: Tapasvi Moturu, Sunnyvale, CA (US)
(73)

")

Assignee: Intuit Inc., Mountain View, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 199 days.

@
(22)

(1)

Appl. No.: 13/899,471

Filed: May 21, 2013

Int. CI.
GOGF 11/00
GOGF 11/30
HO4L 12/26
USS. CL
CPC ... GOGF 11/301 (2013.01); HO4L 43/0823
(2013.01)

(2006.01)
(2006.01)
(2006.01)
(52)

(58) Field of Classification Search
CPC ............ GOG6F 11/3006; GO6F 11/3065; GO6F
11/3086; GOG6F 17/30144; GOG6F 11/301;
HO04L 43/0823

See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS

7,606,814 B2* 10/2009 Deily et al.

2013/0007265 Al* 1/2013 Benedetti etal. ............ 709/224

2013/0018765 Al* 1/2013 Forketal. ... 705/34

2013/0091284 Al* 4/2013 Rothschild ...... ... 709/226

2013/0290441 Al* 10/2013 Linden Levy ... ... 709/206

2014/0019478 Al* 1/2014 Wuetal ... 707/770
OTHER PUBLICATIONS

Mi, Haibo; Wang, Huaimin; and Yin, Gang; “Performance Problems
Online Detection in Cloud Computing Systems via Analyzing
Request Execution Paths;” Dependable Systems and Networks
Workshops (DSN-W), 2011 IEEE/IFIP 41st International Confer-
ence on Jun. 27-30, 2011, pp. 135-139.*

* cited by examiner

Primary Examiner — Joseph Kudirka
(74) Attorney, Agent, or Firm — Osha Liang LLP

(57) ABSTRACT

A method for processing a service request, including receiv-
ing, from a client application, the service request which
includes a header which includes transmission metadata and
a client trace ID. An internal trace 1D is appended to the
service request and a request trace log including the client
trace ID, the internal trace ID, and a time stamp correspond-
ing to receiving the service request is generated. The method
further includes selecting a cloud server including function-
ality to process the service request. The cloud server deter-
mines a dedicated computing cluster of a plurality of distrib-
uted cloud computing clusters to handle the service request
and sends the service request to the dedicated computing
cluster. Finally, the method includes recording, in the request
trace log, an interaction of the dedicated computing cluster
with the service request.

15 Claims, 4 Drawing Sheets

8,171,133 B2* 5/2012 Tanaka .
2010/0228650 Al* 9/2010 Shachametal. ................ 705/34
Client Host System
Client Host
Server A
104A
Client Host <
Server B =
Client / 104B
Application
100
[ ]
[ ]
[ ]
Client Host
Server N
104N

Software Services Cloud
106

Cloud Server
Cluster

108

Cloud
Server A

110A

Cloud Distributed Cloud
Server B «<—»| Computing Clusters
1108 112

A
Y

Monitoring Application
114




US 9,189,355 B1

Sheet 1 of 4

Nov. 17, 2015

U.S. Patent

2
uoneoiddy Bulioluopy

H

H

413
sia1sn|0 Bunndwon

pnoid pangiasia

NOL1
N Jenseg

pnoio

do0ll
g Joaleg

pnojio

VoLl
V JoAleg

pnojio

80T
JLIsn|D
J9AISG PO

901

pNoJD S80IAI9S 9IBMIOS

[ ASE]

Nv0l
N Jonseg

1SOH Jual|D

av0l
g Janieg

1SOH Jual|D

\

001
uoneolddy

o

vv0l
v JoAIg

1SOH Jual|D

201

waysAg 1s0H JuslD




US 9,189,355 B1

Sheet 2 of 4

Nov. 17, 2015

U.S. Patent

g¢ Ol

V¢ Ol

8G¢
Q| ®duejsu| Joug

9G¢
ejeq |ded] |euolippy

VG¢
Q| @2e4] |eulaiu]

80¢
Apog 1sonbay

k514
dweysew |

90¢
A9y Jadojprs(

90¢
Aoy Jadojpaa(

v0¢
al 82ed|

v0¢
Jainuap| eoel |

06¢
o1 9oel] 159Nboy

20¢
JopeaH 1senboy

00¢
1sonbay a21rleg




U.S. Patent Nov. 17, 2015 Sheet 3 of 4 US 9,189,355 B1

START
Step 300 —

Client application generates trace ID
and appends to a service request

Step 302 — l

The client application sends the service
request to the software services cloud

Step 304 — l

The service request is received by a
cloud server cluster

Step 306 — l

An internal trace ID is associated with
the service request

Step 308 —/\ l

Service request processed; monitor
application records components which
interact with the service request

Step 310
Error
processing
the service
request?

Yes

Step 314 — l

Monitoring application
records data related to the

error in a request trace log Y _— Step 312

¢ Return result to client
application

Step 316 —

Software services cloud
issues error message to
client application

FIG. 3
END



U.S. Patent

FIG. 4

Nov. 17, 2015

Sheet 4 of 4

US 9,189,355 B1

Bob’s Bank
402

Developer Dan

Bob’s Bank Data Center

406

Financing Calculation

Application
404
A
Carl’'s Cloud
406 v
Request Monitoring .
- Request Handling
Tracz Log Appll}:anon - Server Cluster
420A 418A 410
Tf;?eufzt /'A\\Aor;;zg?ig% Financial Services
B 9 PP B ] Cluster
420B 418B 412
e B
c 9 PP c 4—p| Services Cluster
420C 418C 414

Technician Ted

I

Information Database

User Financial

416




US 9,189,355 Bl

1
METHOD AND SYSTEM FOR PROCESSING A
SERVICE REQUEST

BACKGROUND

Cloud computing is increasingly common in modern soft-
ware design. Software as a service is an implementation
where a business client uses the functionality of software
being executed by a service provider in the cloud. Specifi-
cally, the business client may issue arequest to the software in
the cloud. In response, the software executes tasks for the
request and provides a result to the business client.

SUMMARY

In general, in one aspect, the invention relates to a method
for processing a service request. The method includes receiv-
ing, from a client application, the service request including a
header including transmission metadata and a client trace ID,
appending, to the service request, an internal trace ID, gen-
erating a request trace log including the client trace ID, the
internal trace ID, and a time stamp corresponding to receiving
the service request and selecting a cloud server including
functionality to process the service request. The cloud server
determines a dedicated computing cluster of a plurality of
distributed cloud computing clusters to handle the service
request, and sends the service request to the dedicated com-
puting cluster. Finally, an interaction of the dedicated com-
puting cluster with the service request is recorded in the
request trace log.

In general, in one aspect, the invention relates to a system
for processing a service request. The system includes a pro-
cessor and a cloud server cluster including functionality to
receive, from a client application, the service request includ-
ing a header including transmission metadata and a client
trace ID, and to select a cloud server of the cloud server
cluster to process the service request. The cloud server deter-
mines a dedicated computing cluster of a plurality of distrib-
uted cloud computing clusters to handle the service request,
and sends the service request to the dedicated computing
cluster. The system further includes a monitoring application
including functionality to append, to the service request, an
internal trace ID, to generate a request trace log including the
client trace ID, the internal trace ID, and a time stamp corre-
sponding to receiving the service request, and to record, in the
request trace log, components of the distributed computing
resources which interact with the service request.

In general, in one aspect, the invention relates to a non-
transitory computer readable medium including computer
executable instructions. The computer executable instruc-
tions include functionality for receiving, from a client appli-
cation, the service request including a header comprising
transmission metadata and a client trace 1D, appending, to the
service request, an internal trace 1D, generating a request
trace log, including the client trace ID, the internal trace 1D,
and a time stamp corresponding to receiving the service
request, and selecting a cloud server including functionality
to process the service request. The computer executable
instructions include functionality for determining, by the
cloud server, a dedicated computing cluster of a plurality of
distributed cloud computing clusters to handle the service
request, sending, by the cloud server, the service request to
the dedicated computing cluster, and recording, in the request
trace log, an interaction of the dedicated computing cluster
with the service request.

10

15

20

25

30

40

45

50

55

60

65

2

Other aspects of the invention will be apparent from the
following description and the appended claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows a schematic diagram of a system in accor-
dance with one or more embodiments of the invention.

FIG. 2A shows a service request message in accordance
with one or more embodiments of the invention.

FIG. 2B shows a request trace log in accordance with one
or more embodiments of the invention.

FIG. 3 shows a method for handling and tracing a service
request in accordance with one or more embodiments of the
invention.

FIG. 4 shows an example of a cloud service provider han-
dling and tracing a service request in accordance with one or
more embodiments of the invention.

DETAILED DESCRIPTION

Specific embodiments of the invention will now be
described in detail with reference to the accompanying fig-
ures. Like elements in the various figures are denoted by like
reference numerals for consistency. In the following detailed
description of embodiments of the invention, numerous spe-
cific details are set forth in order to provide a more thorough
understanding of the invention. However, it will be apparent
to one of ordinary skill in the art that the invention may be
practiced without these specific details. In other instances,
well-known features have not been described in detail to
avoid unnecessarily complicating the description.

In general, embodiments of the invention provide a method
and system for appending a client trace identifier (ID) to a
header of a service request being sent to a software services
cloud. Once the service request is received by the software
services cloud, an internal trace ID for the software services
cloud is assigned to service request, and, correspondingly, the
client trace ID generated by the client application. Relating
the client trace ID and internal trace ID allows the internal
debugging of the software services cloud and the external
debugging of the client applications interactions with the
software services cloud to share a common reference point.
Further, the client trace ID associated with a service request
issued by the client application may traverse multiple levels
of abstraction and processing of the service request, which
may be out of the control of the client application, before
interacting with the software services cloud.

FIG. 1 shows a schematic diagram of a system in accor-
dance with one or more embodiments of the invention. As
shownin FIG. 1, a client application (100) executes on a client
host system (102), which is connected (e.g., via a network
(not shown)) to a software services cloud (106) in accordance
with one or more embodiments of the invention. The client
host system (102) includes multiple client host servers (e.g.,
clienthost server A (104A), client host server B (104B), client
host server N (104N)). The software services cloud (106)
includes a cloud server cluster (108). The cloud server cluster
(108) may include multiple cloud servers (110A, 110B,
110N). In one or more embodiments of the invention, in
addition to the cloud server cluster (108), the software ser-
vices cloud (106) may include distributed cloud computing
clusters (112). In one or more embodiments of the invention,
the cloud server cluster (108) and the distributing cloud com-
puting clusters (112) may be monitored by one or more
instances of a monitoring application (114). Each of the com-
ponents of the system is discussed in more detail below.



US 9,189,355 Bl

3

In one or more embodiments of the invention, the client
host system (102) is a collection of one or more machines
(e.g., client host servers (e.g., client host server A (104A),
client host server B (104B), client host server N (104N) and
other machines (not shown)) that includes functionality to
execute the client application (100) (discussed below). In one
or more embodiments of the application, the client host sys-
tem (102) may be a cloud environment. Each machine of the
client host system (102) may include one or more processors,
memory (e.g. random access memory (RAM)), storage
devices (e.g. hard disk drives, solid states drives, flash
memory, optical disks, magnetic tape), network adapters,
displays, and other input/output devices. The client host sys-
tem (102) may be directly accessed by a user (e.g. via mouse,
keyboard, touchpad, or other physical input device), or may
be accessed remotely (e.g. via a virtual terminal, a shared
desktop, an internet browser, or other method of remotely
accessing a computer system).

In one or more embodiments of the invention, the client
host system (102) may be a located on machines located in a
third party server cluster or data center allocated to the client
application (100) by the third party hosting service or cloud
computing provider. The client host system (102) may
include a single execution environment which spans multiple
physical machines, multiple execution environments located
on a single physical machine, or any other combination of
hardware and virtualization. The client host system (102)
may span multiple physical machines, networks, data centers,
geographic locations, execution environments, and third
party providers.

By way of an example, the client host system (102) may
correspond to data center operated by a financial institution. A
financial institution, such as a bank, may have multiple data
centers in different geographic locations in order to expedi-
ently provide service to regional branches. The however, soft-
ware executed by one branch may be required to seamlessly
access data stored by another branch. Further, as maintenance
and updating across the data centers may be inconsistent, the
same software may be required to execute seamlessly across
different execution environments and hardware.

In one or more embodiments of the invention, the client
host system (102) includes multiple client host servers (e.g.,
clienthost server A (104A), client host server B (104B), client
host server N (104N)). The client host servers may include
functionality to connect to, and communicate with other sys-
tems via a network (e.g., the Internet). The client host servers
may be the only hardware on the client host system (102).
Alternatively or additionally, the client host servers may only
provide network connectivity, and may connect to other hard-
ware in the client host system (102). In one or more embodi-
ments of the invention, the client host servers may include
multiple levels of abstraction. The abstraction may present
the client host servers as a single virtual network interface, as
a similar number of anonymous virtual servers as the client
host servers, or as a greater number of virtual servers than the
number of client host servers.

Returning to the client host system (102), the client host
system (102) includes functionality to execute the client
application (100). Specifically, the client application may
execute on one or more machines (e.g., client host servers
(e.g., client host server A (104A), client host server B (104B),
client host server N (104N)) or other computer system(s) (not
shown)). The client application (100) is a software applica-
tion that performs operations for a client. In one or more
embodiments of the invention, the client controls the execu-
tion of the client application (100). The client application
(100) may be a single distributed application, which executes

10

15

20

25

30

35

40

45

50

55

60

65

4

in parallel across many distinct physical machines. Alterna-
tively or additionally, many distinct instances of the client
application (100) may execute on one or more machines of
the client host system (102). In one or more embodiments of
the invention, the client application (100) may include mul-
tiple modules, auxiliary applications, and implementations of
specific features which execute remotely from the main appli-
cation.

In one or more embodiments of the invention, the client
application (100) may include a user interface (not shown)
and/or an application programming interface (not shown).
The user interface may include functionality to receive com-
mands by a user (e.g., an individual who is a part of the client
and/or a customer of the client). The client application (100)
may also include functionality to execute as a sub-process of,
orbe controlled by another application. The client application
(100) may be a service oriented application, which may be
accessed by multiple users simultaneously, such as, for
example, a search engine, web application, a database, and/or
other application.

In one or more embodiments of the invention, the client
application (100) may be financial services software, and
include features such as electronic banking, accounting, tax
preparation, or other financial management features. The cli-
ent application (100) may be accessible only to users and
applications with access to the client host system (102) or
who have permission from the client entity. Alternatively or
additionally, the client application (100) or only components
of the client application (100) may be accessible to general
users. The client application (100) may include a website
interface, or may be accessed through a terminal, or using a
dedicated application.

In one or more embodiments of the invention, the client
application (100) may include functionality to generate a
service request (discussed below and in FIG. 2A) to remotely
interact with resources and software located in the software
services cloud (106) (discussed below). The client applica-
tion (100) may include functionality to generate and append a
client trace ID and a developer key to a header of the service
request in order to easily trace interactions with the software
services cloud (106). As used in this description and claims, a
client application generates and appends a client trace ID
and/or the developer key when the client application directly
appends client trace ID and/or the developer key or when
another application (e.g., an application on the client host
system) appends the client trace ID and/or the developer key
for the client application.

By way of an example of the client application, consider
the scenario in which the client application is a financial
institution application. For example, the financial institution
application may include functionality to perform a loan
financing calculation that requires data about the financial
history of many users. The data may be collected by a separate
financial software company, which has access to the financial
history of many users. The financial software company may
offer, as a service, cloud software which can perform manipu-
lations of the data, such as performing background checks of
user finances based upon that collected data. Thus, rather than
including functionality to obtain the data and perform the
background check of the loan financing calculation locally
(e.g., on the client host system (102)), the financial institution
application may instead include functionality only to issue a
service request to the financial software company, and to
obtain a result of the background check.

Continuing with FIG. 1, in one or more embodiments of the
invention, a software services cloud (106) is a collection of
interconnected computer hardware which may be used to



US 9,189,355 Bl

5

perform many simultaneous computing tasks of varying size
and complexity. The software services cloud (106) may
execute one or more cloud application(s) (not shown) as a
service for a client. The cloud applications may include data
processing, data storage, webhosting, data mining, advertis-
ing, or other types of software. In one or more embodiments
of the invention, the cloud application(s) may include func-
tionality to process a service request from a client and return
a result to the client. In one or more embodiments of the
invention, the software services cloud (106) may include
functionality to allow a client to directly control the execution
of the cloud application. Alternatively or additionally, the
client may only interact with the cloud application using an
interface or library managed and maintained by the software
services cloud (106).

In one or more embodiments of the invention, the software
services cloud (108) includes one or more cloud server clus-
ters (108). A cloud server cluster (108) may be a collection of
one or more machines (e.g., cloud servers (e.g., cloud server
A (110A), cloud server B (110B), cloud server N (110N),
distributed cloud computing clusters (110), and other
machines (not shown)) that includes functionality to execute
one or more cloud applications (not shown) and a monitoring
application (114) (discussed below). In one or more embodi-
ments of the application, the software services cloud (106) is
a cloud environment. Each machine of the software services
cloud (106) may include one or more processors, memory
(e.g. random access memory (RAM)), storage devices (e.g.
hard disk drives, solid states drives, flash memory, optical
disks, magnetic tape), network adapters, displays, and other
input/output devices. The software services cloud (106) may
be directly accessed by a user (e.g. via mouse, keyboard,
touchpad, or other physical input device), or may be accessed
remotely (e.g. via a virtual terminal, a shared desktop, an
internet browser, or other method of remotely accessing a
computer system).

In one or more embodiments of the invention, the cloud
server cluster (108) may include or may serve as an entry
point, or provide an interface for interacting with a larger
network of distributed cloud computing clusters (112). In one
or more embodiments of the invention, the cloud server clus-
ter (108) may be dedicated to receiving and handling service
requests.

In one or more embodiments of the invention, the cloud
server cluster (108) includes multiple cloud servers (e.g.,
cloud server A (110A), cloud server B (110B), cloud server N
(110N)). In one or more embodiments of the invention, the
cluster servers (110A, 110B, 110N) include functionality to
send and receive data over a network. A cloud server may be
dedicated to receiving and processing any service request.
Alternatively, a cloud server (110A, 110B, 110N) may be
selected to handle service requests based on, for example,
factors such as the availability of the cloud server (110A,
110B, 110N), the identity of the client that issued the service
request, the service requested in the service request, and/or
other factors.

In one or more embodiments of the invention, the software
services cloud (106) includes distributed cloud computing
clusters (112). At least a portion of the distributed cloud
computing clusters (112) may only be accessible internally to
the software services cloud (106). Alternatively or addition-
ally, all of the distributed cloud computing clusters (112) may
be accessible externally to the software services cloud. In one
or more embodiments of the invention, all of the available
resources may be made available as a single monolithic,
outward-facing system. In one or more embodiments of the
invention, the apparent resources of a single cluster of the

15

40

45

55

6

distributed cloud computing clusters (112) may be elastic and
the portion of the distributed cloud computing clusters (112)
allocated to that cluster may be increased or decreased as
necessary. For example, a cloud may be composed of many
data centers, server clusters, and data repositories forming the
distributed cloud computing clusters (112). Portions of the
processing, communication and storage capacity of these dis-
tributed resources may be allocated to different function spe-
cific clusters as demand dictates.

Although not shown in FIG. 1, in one or more embodi-
ments of the invention, the cloud server cluster (108) may be
one of distributed cloud computing clusters (112). The dis-
tributed cloud computing clusters (112) may include solely
clusters identical in form and function to the cloud service
cluster (108). Each of the distributed cloud computing clus-
ters (112) may include the same external connectivity as the
cloud server cluster (108), but may be associated with a
different specific category of software. Each category of soft-
ware may correspond to the functionality or set of function-
alities provided by the software.

For example, a first cluster of the distributed cloud com-
puting clusters (112) may be dedicated to performing risk
analysis calculations of investments, and may accordingly
have access to resources, which are utilized in said calcula-
tions. The investment risk analysis cluster may be externally
accessible to a first subset of subscribers to a financial ser-
vices cloud. A second cluster of the distributed cloud com-
puting clusters (112) may be dedicated to personal finance
management, and externally available to a second subset of
subscribers, but may be able to access the first to obtain data
to use in its calculations. In one or more embodiments of the
invention, both of these clusters may also include the func-
tionality of the cloud server cluster (108). In an alternate
example, a cloud server cluster (108) may be dedicated to
handling and routing all requests directed into the cloud, and
may include no processing capacity outside of analyzing
service requests and routing them to the appropriate cluster(s)
the distributed cloud computing clusters (112).

In one or more embodiments of the invention, the cloud
server cluster (108) and the distributed cloud computing clus-
ters (112) are monitored by a monitoring application (114).
The monitoring application (114) is a software application
that includes functionality to create a request trace log detail-
ing how the handling of a service request by the various
constituent parts of the software services cloud (106).
Request trace logs are discussed in greater detail in the
description of FIG. 2B below. The monitoring application
(114) may include functionality to append an internal trace ID
to the service request when the service request enters the
software services cloud (106). In one or more embodiments
of the invention, multiple instances of the monitoring appli-
cation (114) may execute within the software services cloud
(106). The monitoring applications (114) may have dedicated
hardware, or all or a portion may execute on the hardware of
the resources being monitored. In one or more embodiments
of the invention, each distinct cloud server cluster (108) and
cluster of the distributed cloud computing clusters (112) may
be monitored by a distinct monitoring application (114). In
one or more embodiments of the invention, each distinct
computer or server within in each server or computing cluster
may be monitored by a distinct instance of the monitoring
application (114).

The request trace logs may be stored locally to the instance
of the monitoring application (114), or in a central data
repository (not shown). In one or more embodiments of the
invention, the disparate logs may be periodically written to a
centralized data repository. In one or more embodiments of



US 9,189,355 Bl

7

the invention, the monitoring application (114) may include
functionality to detect errors occurring in the handling of a
service request, and to record any error instance IDs associ-
ated with the service request.

FIG. 2A shows a service request (200) in accordance with
one or more embodiments of the invention. The service
request (200) may be sent from a client server located in a
client system to a cluster server located in a cloud server
cluster of the software services cloud. The service request
(200) may include a request for a specific computation to be
performed by the cloud service. A service request (200) may
comply with the hypertext transfer protocol (HTTP) or hyper-
text transfer protocol secure (HTTPS). The service request
may include a request header (202) and a request body (208).

In one or more embodiments of the invention, the request
header (202) may include multiple fields which represent
metadata used to establish the parameters of the communica-
tion between the client application which issued the service,
and the cloud server which is handling the service request.
The request body (208) may request portion of the service
request, as well as potential input for computation being
performed, parameters for searches, and similar data. In one
or more embodiments of the invention, multiple messages
may be exchanged between the client application and the
software services cloud as part of the request. The request
header (202) and request body (204) may not be included in
every transmission between client application and the cloud
service. In one or more embodiments of the invention, the
same request header (202) may be used for all transmissions,
but the request body (208) may not be sent until the connec-
tion has been established between the two.

In one or more embodiments of the invention, the service
request (200) includes a request header (202). The request
header (202) may include multiple fields which include oper-
ating parameters of the connection being set up between the
client application and the cloud service server. If the service
request is in accordance with the HT'TP or HTTPS, the core
set of fields standard for internet communication may be
used. Alternatively, or additionally, a custom set of param-
eters may be used to facilitate the needs of the connection
between the client application and the cloud service. In one or
more embodiments of the invention, the request header (202)
may be arbitrarily expandable. In other words, many addi-
tional fields of arbitrary length may be appended to the
request header. In one or more embodiments of the invention,
all communication from the client application to the cloud
service involving the service request (200) uses all or a por-
tion of the same request header (202). The request header
(202) may remain constant and unmodified as the service
request (200) data structure passes through multiple levels of
virtual and physical abstraction en route from the client appli-
cation to the software services cloud. In one or more embodi-
ments of the invention, the request header includes a client
trace ID (204) and a developer key (206) by the client appli-
cation.

In one or more embodiments of the invention, the client
trace ID (204) is aunique identifier that is unique for the client
amongst all service requests from the client. The client trace
1D (204) may be any string of sufficient length to ensure
uniqueness. The string may be a completely random number.
Alternatively, a value may be used that is incremented each
time it is used as a client trace ID (204). In one or more
embodiments of the invention, the client trace ID (204) may
include a timestamp. The client trace ID (204) may include
information which is significant or useful to the client. For
example, a client trace ID (204) may include a user ID asso-
ciated with a user of the client application when the client

10

15

20

25

30

35

40

45

50

55

60

65

8

trace ID (204) was generated. Alternatively, or additionally, a
client trace ID (204) may include a number indicating a
particular application or server of the client system in which
it was generated, or from which it was sent. In one or more
embodiments of the invention, a client trace ID (204) may be
alphabetic or alphanumeric. Further, the client trace ID (204)
may be self-descriptive or easily recognizable to a user seek-
ing to debug the client application or monitor the service
request.

In one or more embodiments of the invention, the service
request (200) may include a developer key (206). The devel-
oper key (206) may be appended to the request header (202)
of' the service request (200). In one or more embodiments of
the invention, the developer key (206) is a string known to the
cloud service, and associated with a specific client of the
cloud service. The developer key (206) may be located in its
own field in the request header (202). Alternatively, the devel-
oper key (206) may be concatenated with, or embedded
within, the client trace ID (204).

In one or more embodiments of the invention, the service
request (200) may include request body (208). The request
body (208) may include the details of the request. The details
of the request, parameters for the request, input for the
request, limitations on the request, and other data which may
be used to define the service or computation to be carried out
by the software services cloud. The request body (208) may
include, for example, a type of service that the service request
is directed to. The type of service may be, for example: a
software application to be executed; a desired result or
inquiry about a particular data item; or a request to store,
delete, or modify data within the cloud. In one or more
embodiments of the invention, the request body (208) may
include a particular destination cluster, module or destination
application. The request body may also include data to be
used in the service, and limitations to be place on the service.
Data to be used in the service may include for example, input
to an equation, function, or applications; terms for a search,
data to be stored, changes to be applied; and/or other data.
Limitations may include, for example, total expenditure of
resources allowable to the client; total time to spend on the
service; particular sources of data to utilize or ignore; limita-
tions on the size, accuracy, precision, and format of a desired
result or output; and/or other limitations.

FIG. 2B shows a request trace log (250) in accordance with
one or more embodiments of the invention. The request trace
log (250) may be a file maintained by the monitoring appli-
cation. As discussed above, the request trace log (250) may be
a single file in which all information in the cloud service
related to a specific service request (200) is gathered. Alter-
natively, many request trace logs (250) may exist, with each
distinct request trace log (250) associated with a single com-
ponent or group of components of the software services cloud
service. If many request trace logs (250) are stored through-
out the software services cloud, the information stored in each
may vary. In one or more embodiments of the invention, both
a single central request trace log (250) and many distributed
request trace logs (250) may exist. The central request trace
log (250) may store locations of the distributed request trace
logs (250), and the distributed request trace logs (250) may
store more detailed data on the interaction of the service
request with the component which the local instance of the
monitoring application is observing.

In one or more embodiments of the invention, the request
trace log (250) includes the client trace ID (204) assigned to
the service request (200) and the developer key (206) of the
client application from which the service request (200) was
received. The client trace ID (204) and developer key (206)



US 9,189,355 Bl

9

may be recorded when the request is received by a server of
the software services cloud. If the request trace log (250) is
distributed within the cloud, the client trace ID (204) and
developer key (206) may be stored only in a central request
trace log (250), or only in the request trace log (250) associ-
ated with the server or cluster which received the service
request. Alternatively, the client trace ID (204) and developer
key (206) may be passed along with the service request (200)
as propagates through the systems of the software services
cloud.

In one or more embodiments of the invention, the request
trace log (250) includes a timestamp (252). The timestamp
(252) may correspond to the service request being received by
the software services cloud. Alternatively or additionally, if
multiple trace request logs (250) exist, each of the trace
request logs may maintain a timestamp relative to the local
encounter with the service request (200).

In one or more embodiments of the invention, the request
trace log (250) includes an internal trace ID (254). The inter-
nal trace ID (254) is an identifier of the service request that is
unique amongst all service requests processed by the soft-
ware services cloud in accordance with one or more embodi-
ments of the invention. The internal trace 1D (254) may be
assigned by the cloud server cluster which received the ser-
vice request, by the monitoring application which is main-
taining the request trace log (250), or by another component
of the software services cloud. The internal trace ID (254)
may be completely unrelated to the client trace 1D (204)
generated by the client application. In one or more embodi-
ments of the invention, the request trace log (250) may be
indexed using the internal trace ID (254).

In one or more embodiments of the invention, the request
trace log (250) includes additional trace data (256) associated
with service request (200). The additional trace data (256)
may include which components or systems of the cloud ser-
vice were utilized to handle the request. For example, the
request trace log (250) may include the path or paths taken by
the service request from reception to completion. The addi-
tional trace data (256) may also include measurements of
performance, such as latencies, power consumption, duration
of'use, volume of resources occupied, secondary applications
accessed, network traffic generated and other metrics of sys-
tem utilization. If the request trace log (250) is of the distrib-
uted variety, the additional trace data (256) may include the
origin of the service request, the portion of the service request
that was performed by the local cluster, and the destination of
any sub-requests generated by the local cluster. Also, any
additional components, systems or applications within the
cloud service which were utilized to handle the request may
also be recorded.

In one or more embodiments of the invention, if an error is
detected while the service request is being processed or
handled, an error instance ID (258) associated with the error
may be stored in the request trace log (250). The error
instance ID (258) In one or more embodiments of the inven-
tion, the monitoring application may generate an error
instance 1D (258) to be shown externally in response to
detecting an internal error instance ID (258) generated by the
component or system in which the error occurred. The error
instance ID (258) may include information such as the loca-
tion of the error, the time of the error, and a description of the
error.

FIG. 3 shows a flowchart for handling and tracing a service
request in accordance with one or more embodiments of the
invention. While the various steps in this flowchart are pre-
sented and described sequentially, one of ordinary skill will
appreciate that some or all of the steps may be executed in

10

40

45

50

10

different orders, may be combined or omitted, and some or all
of the steps may be executed in parallel. Furthermore, the
steps may be performed actively or passively. For example,
some steps may be performed using polling or be interrupt
driven in accordance with one or more embodiments of the
invention. By way of an example, determination steps may
not require a processor to process an instruction unless an
interrupt is received to signify that condition exists in accor-
dance with one or more embodiments of the invention. As
another example, determination steps may be performed by
performing a test, such as checking a data value to test
whether the value is consistent with the tested condition in
accordance with one or more embodiments of the invention.

In Step 300, a client trace ID is generated by the client
application and appended within the header of a service
request in accordance with one or more embodiments of the
invention. As discussed above, various techniques may be
used to generate the client trace ID. In one or more embodi-
ments of the invention, a user of the client application may
select the client trace ID to be used, or may select a string to
use as a basis for the client trace ID. Alternatively or addi-
tionally, the client application may select and a randomly
generated number. Alternatively or additionally, a sequence
number may be obtained and used. Details about the system
on which the client application is executing may be obtained
to aid in tracing the request. In one or more embodiments of
the invention, the client application or client host system may
modify selected client trace ID to attach a signature or iden-
tifying feature. For example, if a developer key is being sent
as well, the client trace ID and the developer key may be
concatenated and added as a single field. The selected client
trace ID may also be padded or truncated to fit in a field of the
header. In one or more embodiments ofthe invention, a record
of the client trace ID is created and stored at the client host
system, in case future use is required. The client trace ID may
be displayed to the user while the request is issued.

The client trace ID is added to the header of the request
prior to a connection being initiated with a software services
cloud. In one or more embodiments of the invention, the
service request may be an HTTP request. In this case, the
client trace ID may simply be appended to the header as an
additional field.

In one or more embodiments of the invention, the client
trace ID may not be automatically included with a service
request, but may instead require the user to execute the client
application using a debugging tool or mode, or other method
of'testing the utilization of the software services cloud. In one
or more embodiments of the invention, additional fields may
need to be added to the header to convey to the receiving cloud
server cluster of the software services cloud that a client trace
1D is included in the header of the service request. Alterna-
tively or additionally, the client trace ID may be added in a
predefined location which the receiving server automatically
checks.

In Step 302, the client application sends the service request
to the software services cloud in accordance with one or more
embodiments of the invention. The service request may
include multiple fields. The fields may define parameters for
a connection with one or more servers of a cloud server
cluster. The service request may be sent from a single client
server of the system on which the client application is execut-
ing. In one or more embodiments of the invention, multiple
simultaneous connections may be established between mul-
tiple client host servers and cluster servers. The multiple
connections may be used to handle a single request in parallel,
or to handle multiple requests simultaneously. In one or more
embodiments of the invention, the service request may be sent



US 9,189,355 Bl

11

to a specific cloud server cluster or server within the cluster.
Alternatively or additionally, the service request may be
directed at a particular address or service associated with the
software services cloud, and the service request may be redi-
rected to a cloud server which will handle the service request.

In Step 304, the service request is received by the cloud
service, and a connection is established between a cloud
server and the client application in accordance with one or
more embodiments of the invention. The details of the service
request may be included in the request body of the service
request. The cloud server may analyze the contents of the
service request and determine what is being requested. The
cloud server may then handle the request or pass the service
request off to other portions of the software services cloud.

In Step 306, an internal trace ID is associated with the
service request in accordance with one or more embodiments
of the invention. In one or more embodiments of the inven-
tion, the internal trace ID may be automatically generated by
the cloud server which is connected with the client applica-
tion. Alternatively or additionally, the internal trace ID may
be generated by the monitoring application. Internal trace IDs
may be sequential numbers assigned to service requests as the
software services cloud receives the service requests. In one
or more embodiments of the invention, the sequence may be
specific to the cloud server or software services cloud in
which the internal trace ID was generated. The internal trace
1D may be generated in the software services cloud similar to
as discussed above with respect to generating the client trace
D.

In Step 308, the service request is processed by the cloud
server cluster in accordance with one or more embodiments
of the invention. After the cloud server has analyzed the
contents of the service request, the cloud server may handle
the request locally, forward the service request to another
system with appropriate functionality, or issue instructions to
other systems of the software services cloud to perform all or
portions of the task requested. If the task is handled locally,
the task may be executed by the cloud server itself, or by
dedicated hardware directly accessible to the cloud server.

In one or more embodiments of the invention, the cloud
service may be made up of many different systems. Different
systems within the software services cloud may be dedicated
to performing different tasks. In one or more embodiments of
the invention, the service request may be passed to sequen-
tially to multiple computing clusters in increasing order of
specialization. Alternatively, or additionally, different ser-
vices required to complete the service request may be sent to
different clusters to be executed in parallel. In one or more
embodiments of the invention, the client application may
obtain functionality to leverage the connection to the software
services cloud to directly control a portion of the computing
resources of the cloud. In one or more embodiments of the
invention, the computing clusters of the software services
cloud may be include functionality to manipulate or perform
computations on a data stream provided by the client appli-
cation through the connection. The receiving cloud server
may forward the data to be manipulated to the computing
cluster or clusters performing the computation.

Additionally, in Step 308, the monitor application records
the interaction of the service request and the cloud service in
a request trace log in accordance with one or more embodi-
ments of the invention. The monitoring application may
include functionality to monitor the various server clusters,
computing clusters, data repositories, and other components
located within the software services cloud. The local
instances of the monitoring application may record every
interaction with every request, or portion of a request and

10

15

20

25

30

35

40

45

50

55

60

65

12

store a record describing the interaction in the request trace
log corresponding to the service request. In one or more
embodiments of the invention, a separate instance of the
request trace log for the service request is maintained for each
instance of the monitoring application. The instances of the
request trace log may include different sets of data, which is
specific to the component of the software services cloud
which is being monitored. In one or more embodiments of the
invention, data collected by the distributed monitoring appli-
cations may be written to a central request trace log. In one or
more embodiments of the invention, in embodiments in
which only a single instance of the monitoring application for
the entire software service cloud exists, components may
include functionality to report significant events to the moni-
toring application to be recorded.

In Step 310, a determination is made if an error has
occurred in the processing of the service request by the soft-
ware service cloud. An error may be a cluster or other com-
ponent of the software service cloud failing to perform as
expected, a failure in communication, either within the soft-
ware services cloud, or with an external system, a lack of data
required to fulfill the request, and any other potential type of
misuse or bug within the cloud service. The error may be in
software, hardware, or a combination. In one or more
embodiments of the invention, the component or system in
which the error occurs detects the error and signals an error
condition. The error condition may include a code or instance
number which corresponds to the nature of the error. In one or
more embodiments of the invention, the error may be discov-
ered by the monitoring application, either by observing the
error during monitoring, or by detecting a discrepancy in data
recording in the request trace log.

In Step 312, if no error occurs in processing the service
request, the service request is handled and the result is option-
ally returned to the client application. Further, the connection
which facilitated the service request being sent may be ter-
minated. Although FIG. 3 shows the returning of the result to
be mutually exclusive with the error, in one or more embodi-
ments ofthe invention, if the error can be overcome automati-
cally, the handling of the service request continues, and the
result is returned regardless.

In Step 314, if an error occurs while processing the service
request, data related to the error is recorded in the request
trace log. The data may include the error instance number
discussed above. Other details relevant to the error, such as
the state of the system at the point where the error occurred,
the task that was being performed, the time at which the error
occurred, and similar data.

In Step 316, if an error occurs, the software services cloud
sends an error message to the client application. The error
message may simply inform the client application that the
handling of the request could not be completed due to an
error. Alternatively, the error message may include the client
trace ID appended to the header of the service request by the
client application, the error instance number, and other infor-
mation that may be used to trace the service request and the
error within the software services cloud. For example, if the
software services cloud experienced an error while process-
ing a client service request, the client would receive an error
message. If the client contacted an administrator or auto-
mated error application at the software services cloud to
resolve the error, the client could supply the client trace ID.
The administrator or an automated application could use the
client trace ID to perform a search of request trace logs at
cloud server clusters that the client may have sent the service
request to. When the request trace log associated with the



US 9,189,355 Bl

13

client trace ID was identified, the administrator could extract
the internal trace ID, and easily track down the error within
the software services cloud.

FIG. 4 shows an example in accordance with one or more
embodiments of the invention. The example is included for
explanatory purposes only and is not intended to limit the
scope of the invention.

Developer Dan (400) is a financial software service pro-
grammer at Bob’s Bank (402). Dan (400) is currently perfect-
ing his most recent project for Bob’s Bank (402), a financing
calculation application (404), which will run locally on Bob’s
Bank Data Center (406) and will allow bankers at Bob’s Bank
(402) to easily obtain the terms for financing terms to give to
potential customers. Since Bob’s Bank (406) lacks the com-
putational capacity and access to appropriate information on
potential customers, Dan (400) has decided to use a Carl’s
Cloud (408), a financial services and data aggregation com-
pany, to calculate loan financing remotely.

Dan (400) is currently debugging the financing calculation
application (404). In order to request that Carl’s Cloud (408)
obtain financing for a particular customer, Dan (400) gener-
ates an HTTPS request using Loan Financing Calculator
(404). The HTTPS request includes in the request body an
identifier of the task that the loan financing calculator (404) is
asking Carl’s Cloud (406) to perform, in this case a financing
appraisal, and an identifier of the customer for who the financ-
ing appraisal is being done. Included in the header of the
request, in addition to the parameters of the connection being
established, are a developer key identifying Bob’s Bank (402)
as the entity making the request, and a client trace ID gener-
ated by Dan (400), which will allow his counterpart at Carl’s
(406), Technician Ted, to easily identify a particular service
request that was received.

From Dan’s (400) perspective, after the HTTPS request is
generated by the financing calculation application (404), the
HTTPS request is sent by one of the servers in Bob’s Bank
Data Center to Carl’s Cloud (408). Because Dan (400) is
working in a virtual environment provide by the data center
(406), Dan (400) does not know exactly which of the servers
sends the request, nor does Dan (400) know the exact desti-
nation within Carl’s Cloud (408). The message is received by
an available server in a request handling server cluster (410)
located in a general purpose data center in Carl’s Cloud (408).
As soon as the request is in Carl’s Cloud (408), an internal
trace ID is assigned to it. In this case, the internal trace ID is
simply a value that is incremented for each request received
by Carl’s Cloud (408). When the request is received, a first
instance of a monitoring application (418A) located on the
request handling server (410) records the developer key, cli-
ent trace ID, and timestamp corresponding to the reception of
the request into a request trace log (420A) associated with the
internal trace ID.

The request handling server (410) processes the contents of
the request from Bob’s Bank (400), and identifies it as finan-
cial in nature. After reformatting the request for internal trans-
mission with Carl’s Cloud (406), the request handling server
cluster (410) forwards the request to a second data cluster
dedicated to financial services (416). The monitoring appli-
cation (418A) records the time at which the request was
forwarded, and the destination in request trace log (420A)

The request is received by the financial services cluster
(412). A second instance of the monitoring application
(418B), observes and records the receipt of a request with the
internal trace 1D, and appends additional data about the local
handling of the request, including where the request was
received from, which physical machines are involved han-
dling the request, and other relevant data to the request trace

10

15

20

25

30

35

40

45

50

55

60

65

14

log (420B). The financial services cluster (412) includes
functionality to perform most of the computation to acquire
the financing projection; however, to do so, the data must be
obtained, which describes the financial history of the subject
calculation. A sub-request to obtain said financial historical
data is generated, and associated with the internal trace ID.
The sub-request is then sent to a third data cluster, which is
dedicated to performing data mining cluster (414).

Upon receipt of the sub-request, like the other clusters, an
instance of the monitoring application (418C) executing on
the data mining cluster records the details of the request
relevant to the data mining cluster (414) to the local request
trace log (420C). The data mining cluster (414) identifies a
likely location of data appropriate for performing the compu-
tation. In this case, the likely location is identified that the
subject of the calculation has an account with a personal
finance application offered by a subsidiary of the parent com-
pany of Carl’s Cloud (408), which has a user financial infor-
mation database (416) located within the cloud. The data
mining services cluster (414) sends a data request to the data
cluster in which the user financial information database (416)
is located. However, the server within the data mining cluster
(414), which is connected to the user financial information
database (416), fails to establish a connection. When a con-
nection cannot be established, the data mining services clus-
ter (414) issues an error notification, including an error
instance ID. The local instance of the monitoring application
(418C) records the error instance ID to the request trace log
(420C), as well as the server which was involved, and the
intended destination of the data request.

Meanwhile, the error in handling the request has propa-
gated back through the chain of data clusters, with each
cluster returning a more generic message to the next. Along
the way, each of the monitoring applications (e.g., monitoring
application A (418A), monitoring application B (418B),
monitoring application C (418C)) records the details of the
received error message to the local trace log (record trace log
A (420A), record trace log B (420B), record trace log C
(420C)) which is associated with the internal trace ID. Even-
tually, the request handling server (410) to which the Bob’s
Bank Data Center (406) is connected simply terminates the
connection using a fail condition, and a confused Dan (400) is
left to try and debug his own software. After failing to identify
an error in his system, Dan (400) calls Technician Ted (422)
atthe I'T department of Carl’s Cloud (408). Dan (400) informs
Ted (422) of the problem, and provides him with his devel-
oper key, and several client trace 1Ds for his various failed
service requests.

Ted (422) performs a search of request trace log A (420A)
of'the request handling server cluster (410) for a request trace
log (420 A) which matches the developer key and client trace
ID associated with the request. After determining that the
error was not in the request handling server cluster, Ted (422)
traces the request to the financial service cluster (412). After
consulting the local request trace log B (420B), he determines
that the error did not originate in the financial service cluster
(412) either, and traces the sub-request to the data mining
cluster (414). Technician Ted (422), after consulting the
request trace log C (420C), correctly identifies the problem
server in the data mining cluster (414), and remotely initiates
a reset which fixes the problem.

Software instructions in the form of computer readable
program code to perform embodiments of the invention may
be stored, in whole or in part, temporarily or permanently, on
a non-transitory computer readable medium such as a CD,
DVD, storage device, a diskette, a tape, flash memory, physi-
cal memory, or any other computer readable storage medium.



US 9,189,355 Bl

15

Specifically, the software instructions may correspond to
computer readable program code that when executed by a
processor(s), is configured to perform embodiments of the
invention.

While the invention has been described with respect to a
limited number of embodiments, those skilled in the art,
having benefit of this disclosure, will appreciate that other
embodiments can be devised which do not depart from the
scope of the invention as disclosed herein. Accordingly, the
scope of the invention should be limited only by the attached
claims.

What is claimed is:

1. A method for processing a service request, comprising:

receiving, from a client application, the service request

comprising a header comprising transmission metadata
and a client trace ID, wherein the client application is
executing on virtual resources provided by a client host
system, including a virtual network interface;

appending, to the service request, an internal trace ID;

generating a request trace log comprising the client trace

1D, the internal trace ID, and a time stamp corresponding
to receiving the service request;

selecting a cloud server configured to process the service

request;

determining, by the cloud server, a dedicated computing

cluster of a plurality of distributed cloud computing
clusters to handle the service request;

sending, by the cloud server, the service request to the

dedicated computing cluster; and

recording, in the request trace log, an interaction of the

dedicated computing cluster with the service request,
and an identity of a server in the client host system from
which the service request was issued.

2. The method of claim 1 further comprising:

detecting an error in the interaction of the dedicated com-

puting cluster with the service request;

generating an error instance ID corresponding to the error;

recording the error instance 1D in the request trace log; and

issuing an error message to the client application, compris-
ing the error instance ID and the client trace ID.

3. The method of claim 1, further comprising:

identifying a category of software for handling the service

request; and

identifying, based on the category of software, the dedi-

cated computing cluster, wherein the dedicated comput-
ing cluster is configured to execute a software applica-
tion in the category of software.

4. The method of claim 3, wherein the plurality of distrib-
uted cloud computing clusters maintain a plurality of request
trace files associated with the internal trace ID for the service
request, wherein each of the plurality of request trace files
comprise data describing processing of the service request in
a corresponding distributed computing cluster.

5. The method of claim 1, wherein the service request is an
HTTP request, and wherein the header is an HT'TP header.

6. A system for processing a service request, comprising:

a processor;

a cloud server cluster configured to:

receive, from a client application, the service request
comprising a header comprising transmission meta-
data and a client trace ID, wherein the client applica-
tion is executing on virtual resources provided by a
client host system, including a virtual network inter-
face;

select a cloud server of the cloud server cluster to pro-
cess the service request;

15

20

25

30

35

40

45

50

55

16

determine, by the cloud server, a dedicated computing
cluster of a plurality of distributed cloud computing
clusters to handle the service request; and

send, by the cloud server, the service request to the
dedicated computing cluster; and

a monitoring application, configured to:

append, to the service request, an internal trace ID;

generate a request trace log comprising the client trace
1D, the internal trace ID, and a time stamp corre-
sponding to receiving the service request; and

record, in the request trace log, components of distrib-
uted computing resources which interact with the ser-
vice request, and an identity of a server in the client
host system from which the service request was
issued.

7. The system of claim 6, wherein the monitoring applica-
tion is further configured to:

detect an error in the interaction of the dedicated comput-

ing cluster with the service request;

generate an error instance 1D corresponding to the error;

record the error instance ID in the request trace log; and

issue an error message to the client application, comprising
the error instance ID and the client trace ID.

8. The system of claim 6, wherein the cloud server cluster
is further configured to:

identify a category of software for handling the service

request; and

identify, based on the category of software, the dedicated

computing cluster, wherein the dedicated computing
cluster is configured to execute a software application in
the category of software.

9. The system of claim 8, wherein the plurality of distrib-
uted cloud computing clusters maintain a plurality of request
trace files associated with the internal trace ID for the service
request, wherein each of the plurality of request trace files
comprise data describing processing of the service request in
a corresponding distributed computing cluster.

10. The system of claim 6, wherein the service request is an
HTTP request, and wherein the header is an HT'TP header.

11. A non-transitory computer readable medium compris-
ing computer executable instructions for:

receiving, from a client application, a service request com-

prising a header comprising transmission metadataand a
client trace ID, wherein the client application is execut-
ing on virtual resources provided by a client host system,
including a virtual network interface;

appending, to the service request, an internal trace ID;

generating a request trace log comprising the client trace

1D, the internal trace ID, and a time stamp corresponding
to receiving the service request; selecting a cloud server
configured to process the service request;

determining, by the cloud server, a dedicated computing

cluster of a plurality of distributed cloud computing
clusters to handle the service request;

sending, by the cloud server, the service request to the

dedicated computing cluster; and

recording, in the request trace log, an interaction of the

dedicated computing cluster with the service request,
and an identity of a server in the client host system from
which the service request was issued.

12. The non-transitory computer readable medium of claim
11, further comprising computer executable instructions for:

detecting an error in the interaction of the dedicated com-

puting cluster with the service request;

generating an error instance ID corresponding to the error;

recording the error instance ID in the request trace log; and



US 9,189,355 Bl

17

issuing an error message to the client application, compris-
ing the error instance ID and the client trace ID.

13. The non-transitory computer readable medium of claim
11, further comprising computer executable instructions for:

identifying a category of software for handling the service

request; and

identifying, based on the category of software, the dedi-

cated computing cluster, wherein the dedicated comput-
ing cluster is configured to execute a software applica-
tion in the category of software.

14. The non-transitory computer readable medium of claim
13, wherein the plurality of distributed cloud computing clus-
ters maintain a plurality of request trace files associated with
the internal trace ID for the service request, wherein each of
the plurality of request trace files comprise data describing
processing of the service request in a corresponding distrib-
uted computing cluster.

15. The non-transitory computer readable medium of claim
11, wherein the service request is an HTTP request, and
wherein the header is an HTTP header.

#* #* #* #* #*

10

15

20

18



